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Relationships for the correlation of dynamic strain and velocity in randomly
vibrating plates and cylindrical shells are derived. These relationships are
of interest for practical predictions of maximum dynamic strain from simple
vibrational velocity measurements obtained using accelerometers, and are based
on (1) far"eld relationships between the propagating wave components of dynamic
strain and velocity, (2) factors for the e!ects of evanescent waves, and (3) the
correlation of dynamic strain and velocity spatial maxima in narrow frequency
bands. Spatial distributions of dynamic bending strain and velocity are also
presented depicting the propagating wave component of the response, correlations
between dynamic strain and velocity, evanescent wave e!ects and dynamic
stress concentration at clamped boundaries. Experimental results are presented
supporting the use of derived relationships for the measurement of maximum
dynamic strain. The derived relationships apply equally to narrowband and
broadband-excited systems by avoiding the need to satisfy di!use wave conditions.

( 2000 Academic Press
1. INTRODUCTION

Correlations between dynamic strain and velocity are of interest in the
development of practical methods for the measurement of maximum dynamic
stress and strain in randomly vibrating structures. In a related paper [1], previously
developed relationships [2, 3] for single-mode #exural vibration of thin beams were
formalized and extended to multi-modal vibration at and above the "rst natural
frequency. This involved the use of factors for the e!ects of evanescent waves on the
fundamental far"eld relationship between dynamic strain and velocity; the
correlation of dynamic strain and velocity spatial maxima in narrow frequency
bands; and the summation of predicted narrow-band spatial maximum values to
obtain conservative overall multi-modal predictions of dynamic strain. The
predicted spatial maximum values in narrow frequency bands f
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and the overall multi-modal prediction of dynamic strain is given by
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where m is dynamic strain, v is velocity, K@ is a factor for evanescent wave e!ects on
the far"eld spatial maxima of dynamic strain and velocity, ST represents the time
average, K

shape
is the non-dimensional shape factor, and K is the non-dimensional

correlation ratio between the spatial maxima of dynamic strain and velocity.
In the present paper, the same approach is used to derive narrowband

relationships between dynamic strain and velocity for random vibration of
transversely excited plates and cylindrical shells similar to equation (1) that can be
used with equation (2) to obtain conservative overall predictions of spatial
maximum dynamic strain. The derived relationships have the same generic form as
those de"ned for beam vibration providing the basis for a consistent theoretical and
experimental approach to the prediction of dynamic stress and strain in beams,
plates and cylindrical shells. In the development followed here, the sum of dynamic
bending strains in orthogonal directions is taken as the upper-bound value of
dynamic strain in far"eld regions. This is assumed to be justi"ed on the basis that
(1) shear strain is equal to zero at locations of maximum far"eld dynamic bending
strain, and (2) the results are expected to be su$ciently conservative to account for
any increase in maximum overall dynamic strain due to in-plane shear strain. The
accuracy of this assertion is tested by way of calculation for the vibration of
clamped cylindrical shells using the maximum principal strain to represent the
complex stress state presented by two in-plane orthogonal components of bending
strain and one component of in-plane shear strain.

Relationships for the prediction of maximum dynamic stress/strain in plates and
cylindrical shells from vibrational velocity data have also been investigated by
Hunt [2], Ungar [3], Stearn [4, 5], and Norton and Fahy [6]. Hunt and Ungar
considered the single-mode vibration of beams, simply supported plates and
clamped circular plates. Stearn considered the far"eld broad band vibration of
plates and provided factors relating spatially averaged far"eld data to maximum
levels of dynamic stress at clamped boundaries. Relationships between dynamic
stress and velocity derived by Stearn are based on the assumption of a di!use wave
"eld and are therefore limited to broadband excited structures in which 10 or more
modes are excited with similar amplitudes of vibration. In the work by Stearn only
one component of dynamic bending stress, which is averaged over all directions, is
considered, and dynamic shear strain is neglected. Norton and Fahy apply the
relationships given by Stearn to an experimental analysis of broadband
correlations between dynamic strain and velocity in constrained and unconstrained
cylindrical shells. Their experimental results support the use of correlations
between dynamic strain and velocity, but the interpretation of results is limited
by a lack of supporting work in the literature on the dynamic stress/strain response
of cylindrical shells and theoretical correlations between dynamic strain and
velocity.
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The work contained in the current paper also serves as a study on the e!ects of
evanescent waves and the direction of wave propagation on dynamic strain.
Increased dynamic strain at a boundary or discontinuity is referred to as dynamic
stress/strain concentration and was "rst studied by Ungar [7] for semi-in"nite
plates with a reinforcing beam discontinuity. The only other published works on
dynamic stress concentration in plates are studies by Stearn [4, 5] on dynamic
stress concentration at clamped boundaries and step changes in thickness of
semi-in"nite plates. These latter studies were based on the assumption of a di!use
wave "eld for statistical energy analysis applications. The only published data
showing dynamic stress concentration in cylindrical shells is contained in a paper
by Forsberg [8], an internal report by Steele [9] referenced by Forsberg, and some
experimental broadband results reported by Norton and Fahy [6].

Dynamic stress concentration e!ects are demonstrated explicitly in this paper by
separately plotting the spatial distributions of the propagating and evanescent
wave components of the response, in addition to the spatial distribution of total
dynamic strain. An important consideration identi"ed here for cylindrical shell
vibration is the e!ect of additional pairs of evanescent waves with much smaller
wavelength (and hence increased wavenumber) than the propagating wave com-
ponent of the response. These additional evanescent waves result in short regions of
increased dynamic strain which are di$cult to measure using strain gauges.

2. FLEXURAL VIBRATION OF THIN RECTANGULAR PLATES

The aims of this section are to investigate the extension of principles and
relationships established for the analysis of beam #exural vibration to the analysis
of transversely excited thin rectangular plates, and to analyze dynamic strain
concentration e!ects in rectangular plates. The main factor in#uencing the response
of rectangular plates is identi"ed as the direction of wave propagation.

2.1 TRAVELLING WAVE SOLUTIONS

The approximate travelling wave solution derived by Karczub [10] for fully
constrained plates is used here to obtain analytical solutions for the analysis of
dynamic strain and velocity in clamped rectangular plates. The approximate
solution simpli"es to the exact ¸evy-type solution for two opposite sides simply
supported. The approximate solution has been used here as the clamped plate
system best demonstrates the e!ects of interest here and an exact solution does not
exist.

2.1.1. ¹he approximate travelling wave solution

The approximate travelling wave solution for a constrained rectangular plate is
given by
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where
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In equation (3), w is the complex displacement at position (x, y); k
x
"k
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cos h is the

x-component of the bending wavenumber k
B
; k
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sin h is the y-component of

k
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; h is the direction of wave propagation; k4
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)2"ohu2/D; h is the plate

thickness; u"2nf is the angular frequency; D"Eh3/12(1!k2) ; and k is the
Poisson ratio.

Expansion of equation (3) after substituting equations (4) and (5) reveals that
only those terms with evanescent wave components in both directions are incorrect
when compared with the complete travelling wave solution. As the in#uence of
these terms is restricted to the corners of a constrained rectangular plate where the
dynamic bending strain and velocity response tend to zero, the approximate
travelling wave solution de"ned by equations (3)}(5) is expected to be reasonably
accurate for plates with combinations of clamped and/or simply supported
boundary conditions. For the case of any two opposite sides simply supported, the
problem of incompatible wavenumbers in the x and y directions does not arise and
the solution is exact. Natural frequencies calculated for clamped rectangular plates
using the approximate travelling wave solution compare well with published values
(refer Appendix A).

2.1.2. ¹ravelling wave solutions for dynamic bending strain and velocity

The dynamic bending strains at the plate surface in the x and y directions for
#exural vibration of a plate, expressed in terms of the approximate travelling wave
solution, are given by
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and the transverse velocity from equation (3) is simply
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where z
m

is the distance of the outermost "bre from the centroidal axis. If far"eld
conditions are assumed and evanescent waves are neglected, the dynamic bending
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strains are given by
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whilst the velocity is given by
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The displacement components w
x,FF

and w
y,FF

are given by equations (4) and (5),
respectively, but with C

x
, D

x
, C
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y
all set to zero leaving only the propagating

wave components.

2.2. FARFIELD RELATIONSHIPS

Far"eld relationships between the propagating wave components of dynamic
strain and velocity are derived as follows. These relationships provide the theoret-
ical basis for correlating the spatial maxima of dynamic bending strain and velocity
in narrow-frequency bands for the prediction of maximum dynamic bending strain.

2.2.1. Relationships for the components of dynamic bending strain

The dynamic bending strains in equations (9) and (10) are related to velocity in
the far"eld by
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where K
shape

"z
m
JA/I is the non-dimensional geometric shape factor (which

equals J3, independent of plate thickness), A is the cross-sectional area, I is the
area moment of inertia, and c

L
is the longitudinal wave speed for a plate given by

c
L
"JE/o(1!k2).
These are the same relationships as for #exural vibration of a beam except that

for plate vibration (1) the far"eld correlation ratio between a component
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of dynamic bending strain and velocity is a function of the direction of wave
propagation and (2) there are two bending strain components, each with a di!erent
far"eld correlation ratio. Since the dominant direction of wave propagation varies
from one frequency to the next and is generally not known from vibration measure-
ments, exact predictions of dynamic bending strain from velocity using the above
relationships are not possible.

2.2.2. Relationships based on the sum of dynamic bending strain components

If the dynamic bending strain component sum m
x,FF

#m
y,FF

is related to velocity
(in place of the individual components of dynamic bending strain), the wavenumber
independent relationship
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results. As this relationship is independent of the direction of wave propagation for
vibration at frequency f, it can be re-expressed as
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This relationship is equivalent to the far"eld relationship between dynamic bending
strain and velocity for beam #exural vibration. It is independent of plate thickness,
frequency and the direction of wave propagation.

Comparing equation (15) with equations (12) and (13), it is seen that the sum of
dynamic bending strains in equation (15) provides an upper bound value for the
components of dynamic bending strain in far"eld regions. The results for cylin-
drical shell vibration in section 3 indicate that this also represents the upper-bound
value of the maximum principal strain taking account of dynamic shear strain in
addition to the two components of dynamic bending strain. Equation (15) can be
used with equations (1) and (2) for upper-bound predictions of maximum dynamic
bending strain in far"eld regions.

2.3. MODAL SPATIAL DISTRIBUTIONS

The approximate travelling wave solution presented in section 2.1.1 is used in
this section to analyze the modal spatial distributions of dynamic bending strain
and velocity in a clamped rectangular plate. The system dimensions are given in
Figure 1, and the values of m, n, f

m,n
, k

x
, k

y
and h for each of the "rst 10 natural

frequencies are listed in Table 1.

2.3.1. Calculation procedures

The wavenumber component magnitudes k
x

and k
y

are solved simultaneously
from the determinant of the boundary condition matrix for natural frequency (m, n).
Once k and k are known, the complex constants in the x and y directions are
x y



Figure 1. Clamped rectangular plate system.
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solved separately using the same procedures as for the vibration of a one-dimen-
sional beam. The modal spatial distributions for dynamic bending strain are then
calculated using the expressions
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whilst the velocity response is calculated from equation (8). The predicted dynamic
strain is calculated from velocity using the far"eld relationship

m
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which follows from equation (15), where K
shape

equals J3 and c
L

is de"ned in
Section 2.2.1. As the spatial distributions along a line x"constant or y"constant
are independent of the response in the normal direction, the two normal directions
can be analyzed independently.

2.3.2. Spatial distributions

Spatial distributions of dynamic bending strain for the fourth natural frequency
of the clamped plate in Figure 1 are plotted in Figure 2. These spatial distributions
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are presented as slices parallel to the plate edges, passing through the position of
maximum velocity. The spatial distributions in the x direction are for the dynamic
bending strain m

x
and the predicted dynamic strain m

pred
from equation (18); the

spatial distributions in the y direction are for the dynamic bending strain m
y
and the

predicted dynamic strain m
pred

. Response levels are normalized to give unit
predicted dynamic strain at the position of maximum velocity. The propagating
and evanescent wave components of the velocity response are also shown, plotted
after scaling according to equation (18) to give &&predicted'' dynamic strain, for
comparison with the spatial distributions of dynamic strain and total velocity.

2.3.3. =avenumber e+ects on far,eld dynamic strain levels

The propagating wave component of dynamic bending strain in the x direction
(m

x
) is proportional to k2

x
, whilst the propagating wave component of dynamic

bending strain in the y direction (m
y
) is proportional to k2

y
(refer equations (9) and

(10)). Since k2
x
#k2

y
equals k2

B
, a large value of k2

x
relative to k2

B
implies a small value

of k2
y
, and vice versa. As a consequence of these e!ects, the direction with the larger

value of (k
x
, k

y
) will be the component direction with the highest level of dynamic

bending strain. This is demonstrated by the dominance of m
x
in Figure 2 for k

x
'k

y
(mode (4, 1)). The values of k

x
and k

y
, as well as the direction of wave propagation,

are listed in Table 1. As their values vary from one mode to the next, the relative
magnitudes and the largest component of far"eld dynamic bending strain will also
vary.

2.3.4. Dynamic strain concentration

Dynamic strain concentration is observed at the clamped boundaries of the plate
for both m

x
and m

y
. Dynamic strain concentration is a result of evanescent wave

e!ects and is a function of both k2
x

and k2
y
, as seen from equations (16) and (17). The

level of dynamic strain concentration is largest for the bending strain component
with the smallest propagating wavenumber component magnitude and the lowest
level of far"eld dynamic bending strain. However, maximum dynamic bending
strain occurs in the component direction that has the smallest level of dynamic
strain concentration but the largest level of far"eld dynamic bending strain. For
instance, in Figure 2 for mode (4,1), dynamic strain concentration is largest for
m
y
(the y direction wavenumber component magnitude (k

y
"6)1) is smaller than in

the x direction (k
x
"12)4)), whilst the dynamic strain m

x
is much larger in spite of

a smaller value of dynamic strain concentration.
It is also useful to note that the travelling wave equation for a component of

dynamic bending strain approximates the equation for dynamic strain in a beam as
the bending wavenumber component in that direction tends to k

B
. Therefore, for

shallow angles of wave propagation (h close to 0 or n/2), the level of dynamic strain
concentration tends to the level of dynamic strain concentration in a beam in
the component direction with the largest level of dynamic strain. Inspection of
equations (16) and (17) also reveals that the level of dynamic strain concentration in
plates is always larger than in beams due to coupling with the normal direction of



Figure 2. Modal spatial distributions of a clamped plate for mode (4,1): (a) x direction bending
strain m
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and predicted strain m
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; (b) y direction bending strain m
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wave propagation for evanescent waves (via the evanescent bending wavenumbers,
Jk2

x
#2k2

y
and J2k2

x
#k2

y
).

2.3.5. Far,eld correlation of dynamic bending strain and velocity

Since it is the sum of the dynamic bending strain components which is correlated
with velocity (refer equation (14)), the dynamic bending strain components, m

x
and

m
y
, are always overpredicted in the far"eld using velocity predictions based on

equation (18) without any allowance for the direction of wave propagation. As the
dominant direction of wave propagation varies with frequency and cannot be taken
into account using simple velocity measurements, only upper-bound predictions of
far"eld dynamic bending strain are possible using strain}velocity correlations. This
is demonstrated in Figure 2. The predictions are most accurate for the dominant
component of dynamic bending strain and at shallow angles of wave propagation.
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2.3.6. Evanescent wave e+ects

Evanescent wave e!ects on dynamic strain and velocity near the clamped
boundaries are similar to those observed for the #exural vibration of thin beams
[1]. Evanescent waves for the cases considered increase one of dynamic strain and
velocity and decrease the other in comparison with the propagating wave compon-
ent of the response at a particular location (x, y). At the clamped boundaries, for
instance, dynamic strain is increased compared with the propagating wave com-
ponent of the response, whilst velocity is decreased to zero. This prevents the
correlation of dynamic strain and velocity at the same position for the prediction
of maximum dynamic strain. Evanescent waves also have the e!ect of increasing
the spatial maxima of dynamic strain and velocity above their maximum far"eld
levels, but by di!erent amounts for fully constrained plates and always at
di!erent locations. The factor K@( f ) in equation (1) is used to take account of
evanescent wave e!ects on the correlation of dynamic strain and velocity spatial
maxima.

2.3.7. Correlation ratio values

The non-dimensional correlation ratio K( f ) in equations (1) and (2), obtained by
combining the factor K@( f ) with the non-dimensional shape factor K

shape
, needs to

lie in a small range for practical predictions of maximum dynamic strain in
broadband randomly excited plates. K( f ) is listed in Table 1 for each of the "rst 10
natural frequencies of the clamped plate in Figure 1. The values of K( f ) are
observed to lie in a narrow range (1)7}2)3) supporting the use of equation (2) to
obtain conservative narrowband and broadband predictions of maximum dynamic
bending strain from measurements of maximum velocity. Also listed in Table 1 are
values of the factor K@( f ) for the e!ect of evanescent waves on the far"eld
correlation ratio. K@( f ) is observed to lie in the range 1)0}1)32 for the system under
TABLE 1

Clamped plate natural frequencies, wavenumbers, direction of wave propagation,
factor K@ for evanescent wave e+ects on far,eld correlations, and non-dimensional

correlation ratio K

m n f
m,n

(Hz) k
x

k
y

h K@( f ) K( f )

f
1

1 1 51)5 4)5 7)1 57)6 1)126 1)95
f
2

2 1 83)8 8)6 6)5 37)1 1)103 1)91
f
3

1 2 125)3 4)12 12)5 71)8 1)276 2)21
f
4

3 1 138)1 12)4 6)1 26)2 1)218 2)11
f
5

2 2 154)8 8)15 12)2 56)3 1)137 1)97
f
6

3 2 205)6 12)1 11)8 44)4 1)005 1)74
f
7

4 1 212)4 16)1 5)85 20)0 1)264 2)19
f
8

1 3 236)6 3)97 17)7 77)4 1)322 2)29
f
9

2 3 265)4 7)9 17)5 65)7 1)236 2)14
f
10

4 2 277)2 15)8 11)5 36)0 1)114 1)93



DYNAMIC STRAIN AND VELOCITY IN PLATES AND SHELLS 1079
consideration. Both K( f ) and K@( f ) are a function of k
x
/k

y
being largest when

either k
x
Ak

y
or k

y
Ak

x
.

3. CYLINDRICAL SHELL VIBRATION

The correlation of dynamic strain and velocity spatial maxima can also be
extended to the vibration of cylindrical shells. As in section 2, far"eld relationships
between dynamic bending strain and transverse velocity are derived for cylindrical
shell vibration using travelling wave solutions. These relationships are found to
have a high degree of frequency dependency due to propagating waves that
cut-on at higher frequencies, and a resultant velocity parameter based on the
spatial maximum of each of the three velocity components is adopted to
substantially reduce this frequency dependence. Results for the non-dimensional
far"eld correlation ratio between the sum of bending strains and the resultant
velocity parameter are then compared with values of the non-dimensional
correlation ratio between the spatial far"eld maxima of the maximum principal
strain and resultant velocity calculated for modal vibration of a clamped cylindrical
shell. These calculations are used to assess (1) whether the sum of bending strains
provides an upperbound for the maximum principal strain, which takes account of
both shear strain and bending strain; and (2) whether the far"eld relationships
derived for individual pairs of propagating waves can be used to provide an upper
bound correlation ratio for a combination of propagating waves with di!erent
wavenumbers.

Some modal spatial distributions of dynamic bending strain are also presented,
indicating the relative signi"cance of axial and circumferential bending strains with
circumferential mode number, the location of dynamic strain spatial maxima, and
the e!ects of evanescent waves. Finally, the dynamic strain concentration factor
and non-dimensional correlation ratio K( f ) are calculated for a clamped cylin-
drical shell over a range of natural frequencies.

The following analyses are based on the Flugge equations of motion for the free
vibration of a thin cylindrical shell ([11, 8]). Only circumferential modes n"1 and
above are considered.

3.1. TRAVELLING WAVE SOLUTIONS

Cylindrical shell wave propagation can be expressed in terms of two orthogonal
wave components, one in the circumferential direction and the other in the axial
direction. Only propagating waves with wavenumber k

c
"n/a occur in the circum-

ferential direction resulting in circumferential mode shapes of the form cos(nh),
where n is the integral circumferential mode number, h is the shell angular position
and a is the shell mean radius. The circumferential modes are independent of each
other and can be analyzed separately. In the axial direction, for a given circum-
ferential mode n, the axial wavenumber is given by k

a
"k

ns
and these waves have

the form exp(k
ns
x), where x is the axial position along the cylindrical shell axis and

s is the particular axial wave.



Figure 3. Cylindrical shell coordinate system.
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3.1.1. ¹he travelling wave solution

Using the separated wave components described above and the co-ordinate
system de"ned in Figure 3, the complete travelling wave solution may be expressed
as

u(x, h, u)"
=
+
n/0

8
+
s/1

U
ns

cos(nh)ek
nsx, (19a)

*(x, h, u)"
=
+
n/0

8
+
s/1

V
ns

sin(nh)ek
nsx (19b)

w(x, h, u)"
=
+
n/0

8
+
s/1

W
ns

cos(nh)ek
nsx, (19c)

where u, * and w are the complex displacements, U
ns

, V
ns

and W
ns

are the complex
wave amplitudes for circumferential mode n and axial wave s (s"1,2 , 8), and
u"2nf is the angular frequency.

3.1.2. Elimination of in-plane wave amplitudes

Since the out-of-plane radial motions are usually dominant for bending vibration
and are the simplest to measure using an accelerometer, the wave amplitude
coe$cients U

ns
and V

ns
for in-plane motion are expressed in terms of the wave

amplitude coe$cient W
ns

for out-of-plane motions in order to eliminate these terms
and express the travelling wave solution in terms of only out-of-plane displace-
ments. The wave amplitude ratios are de"ned by a

ns
"U

ns
/W

ns
and b

ns
"V

ns
/W

ns
for

each root k
ns

of the characteristic equation. The wave amplitude ratios are obtained
by solving the homogeneous matrix equation formed by the equations of motion
for U

ns
/W

ns
and V

ns
/W

ns
, and are given by

a
ns
"

U
ns

W
ns

"

Q
12

Q
23
!Q

13
Q

22
Q

11
Q

22
!Q

12
Q

21

(20)
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and

b
ns
"

V
ns

W
ns

"

Q
13

Q
21
!Q

11
Q

23
Q

11
Q

22
!Q

12
Q

21

, (21)

where the Q
ij

are de"ned in Appendix B. The wave amplitude ratios are a function
of only the non-dimensional wavenumber k

ns
a, the non-dimensional frequency

X"ua/c
L
, the non-dimensional thickness parameter b"h/aJ12, the circum-

ferential mode number n and the Poisson ratio k. Eliminating U
ns

and V
ns

from
equation (19) using equations (20) and (21), equation (19) becomes

u(x, h, u)"
=
+
n/0

8
+
s/1

a
ns

W
ns

cos(nh)ek
nsx, (22a)

*(x, h, u)"
=
+
n/0

8
+
s/1

b
ns

W
ns

sin(nh)ek
nsx (22b)

and

w(x, h, u)"
=
+
n/0

8
+
s/1

W
ns

cos(nh)ek
nsx. (22c)

3.1.3. Dynamic bending strain

Dynamic bending strain for circumferential mode n as a function of only the
out-of-plane displacements w is obtained by substitution of equation (22) into the
strain}displacement equations

m
x
"

Lu
Lx

!z
L2w
Lx2

(23)

and

mh"A
1

a2#azB Ga
Lv
Lh

#aw#z
Lv
Lh

!z
L2w
Lh H (24)

giving

m
x,n

"

8
+
s/1

W
ns
ek

nsx cos(nh) Mk
ns
a
ns
!zk2

ns
N (25)

and

mh,n"
8
+
s/1

W
ns

ek
nsx cos(nh)A

1
a2#azB Ma#n2z#nab

ns
#nzb

ns
N , (26)

where m
x
is the axial component of dynamic bending strain, mh is the circumferential

component of dynamic bending strain, a is the distance from the cylinder axis to the
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shell middle surface and z is the distance of a point on the shell wall from the shell
middle surface. The maximum and minimum strains occur on the inner and outer
surfaces of the shell wall, at z"$h/2. As the wave amplitude ratios a

ns
and b

ns
are

calculable at non-dimensional frequency X for an arbitrary cylindrical shell with
thickness factor b and the Poisson ratio k, the only unknowns in equations (25) and
(26) are the wave amplitude coe$cients W

ns
. These coe$cients are calculated by

evaluating the boundary condition equations for the system under consideration at
the natural frequencies X

mn
.

3.1.4. <elocity

The velocity response can also be expressed as a function of only W
ns

.
Multiplying equation (22) through by iu and dropping the summation over n, the
velocity response for circumferential mode n is given by

u5
n
(x, h, u)"iu

8
+
s/1

a
ns

W
ns

cos(nh ) ek
nsx, (27a)

*5
n
(x, h, u)"iu

8
+
s/1

b
ns

W
ns

sin(nh) ek
nsx (27b)

and

w5
n
(x, h, u)"iu

8
+
s/1

W
ns

cos(nh) ek
nsx. (27c)

It should be noted that equations (25)}(27) above are for a particular circumferen-
tial mode n only. The complete response is the superposition of the response due to
each of the excited circumferential modes.

3.2. FARFIELD RELATIONSHIPS

Generalizing the far"eld relationship in equation (15) between dynamic strain
and velocity for the possible case of K

shape
being frequency dependent,

K
shape

( f )"
[m

x,FF
(x, y, f )#m

y,FF
(x, y, f )] c

L
v
FF

(x, y, f )
,K

FF
( f ), (28)

where K
FF

is de"ned as the non-dimensional far"eld correlation ratio. The aim of
this section is to derive relationships for K

FF
and investigate its dependence on

frequency. Only axial and circumferential dynamic bending strains are considered
initially since the shear strain is zero at angular positions where the axial and
circumferential dynamic bending strains are largest (shear strain is a function of
sin(nh), whereas the bending strain components are both a function of cos(nh)). At
the end of this section, far"eld correlations between maximum principal strain



DYNAMIC STRAIN AND VELOCITY IN PLATES AND SHELLS 1083
(which combines the bending and shear strains into a single equivalent uniaxial
value of dynamic strain) and velocity for a clamped cylindrical shell system are
compared with far"eld correlation ratios calculated using the formulas derived in
this subsection. Results presented in the "gures are limited to the n"1 and
3 circumferential modes.

3.2.1. Relationships for axial and circumferential dynamic strain based
on transverse velocity

The far"eld relationship between axial dynamic strain and transverse velocity for
propagating waves with wavenumber k

ns
is obtained by substituting equations (25)

and (27c) into equation (28) and dropping the summation over s, yielding

K
FF,axial,ns,wR

( f )"
Dn

x,ns
c
L
D

Dw5
ns
D

"K
k
ns

a
ns
!zk2

ns
iu KcL , (29)

where m
x,ns

is the axial dynamic strain for a propagating wave with wavenumber k
ns
,

w5
ns

is the transverse velocity for the same propagating wave, and both the wave
amplitude ratios W

ns
and dependence on circumferential position h have cancelled

out. The above relationship was derived for a single propagating wave but also
applies to the superposition of two propagating waves travelling in opposite
directions with equal wavenumbers. Substitution of k

n,s`1
"!k

ns
to give

a propagating wave in the opposite direction has no e!ect on equation (29) (since
a
n,s`1

"!a
n,s

from equation (20), k
n,s`1

a
n,s`1

"k
n,s

a
n,s

and zk2
n,s`1

"zk2
n,s

).
Which does not apply to the superposition of propagating waves with unequal
wavenumbers.

Similarly, for circumferential dynamic strain the non-dimensional far"eld
correlation ratio is given by

K
FF,circ,ns,wR

( f )"
Dmh,nscLD

DwR
ns
D

"A
1

a2#azB K
Ma#n2z#nab

ns
#nzb

ns
N

iu K cL , (30)

where mh,ns is the circumferential dynamic strain for a propagating wave with
wavenumber k

ns
, and wR

ns
is the transverse velocity for the same propagating wave.

This relationship also holds for two propagating waves travelling in opposite
directions with the same wavenumber (equation (30) is unchanged for
k
n,s`1

"!k
n,s

as b
n,s`1

"b
ns

from equation (21)), but does not hold for a combina-
tion of propagating waves with unequal wavenumbers.

The non-dimensional far"eld correlation ratios for axial and circumferential
dynamic strains, calculated from equations (29) and (30) at z"h/2 for circumferen-
tial modes n"1 and 3, are plotted in Figure 4 for the k1, k2 and k3 propagating
wave pairs of a cylindrical shell system with thickness factor b"0)0192. The k1
waves are de"ned as the propagating waves with the lowest cut-on frequency for
a given circumferential mode, whilst the k2 and k3 waves are the propagating waves
with higher cut-on frequencies. The k1 wave correlation ratios in Figure 4 are
bounded by the non-dimensional correlation ratio for plate #exural vibration,



Figure 4. Non-dimensional far"eld correlation ratio between dynamic bending strain and
transverse velocity (b"0)0192): (a) n"1; (b) n"3 (** axial strain; - - - - circumferential strain).
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K
shape

"J3. The k2 and k3 waves however have correlation ratios that increase
signi"cantly above K

shape
at higher frequencies. Alternative de"nitions of equations

(29) and (30) are needed to decrease this frequency dependence.

3.2.2. Far,eld relationships based on resultant velocity

Larger values of K
FF

for the k2 and k3 wave pairs result from large in-plane and
small out-of-plane motions relative to dynamic strain. To account for these e!ects,
dynamic strain is correlated with the resultant velocity of all three velocity compo-
nents in place of the transverse velocity. It is also necessary to use spatial maximum
far"eld values of dynamic strain and the three velocity components rather than
their values at the same position to account for their di!erent spatial distributions
(the correlation of bending strain and transverse velocity is a special case where
correlation at the same position is possible). The far"eld relationship between
dynamic strain and velocity for circumferential mode n and axial wave s is then

K
FF,e,ns( f )"

Dme,FF,max,ns
( f )c

L
D

JDuR
FF,max,ns

( f ) D2#D*R
FF,max,ns

( f ) D2#DwR
FF,max,ns

( f ) D2
, (31)
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where the subscript &&max'' denotes the spatial maximum value over the surface of
the cylindrical shell, and e represents either axial strain (me"m

x
), circumferential

strain (me"mh) or the sum of bending strains (me"m
x
#mh).

Expansion of equation (31) reveals that K
FF,e,ns can be expressed in terms of

non-dimensional far"eld correlation ratios between me and the individual velocity
components,

K
FF,e,ns,uR ( f )"

Dme,FF,max,ns
( f ) c

L
D

DuR
FF,max,ns

( f ) D
, (32a)

K
FF,e,ns,vR ( f )"

Dme,FF,max,ns
( f ) c

L
D

D*R
FF,max,ns

( f ) D
(32b)

and

K
FF,e,ns,wR ( f )"

Dme,FF,max,ns
( f ) c

L
D

DwR
FF,max,ns

( f ) D
, (32c)

using the relation

1
K2

FF,e,ns
"

1
K2

FF,e,ns,uR
#

1
K2

FF,e,ns,vR
#

1
K2

FF,e,ns,wR
. (33)

K
FF,e,ns,wR is evaluated using equation (29) and/or equation (30) depending on the

strain of interest (m
x
, mh or m

x
#mh). Equations for K

FF,e,ns,uR and K
FF,e,ns,vR are

obtained by rede"ning the wave amplitude ratios in equations (25)}(27) in terms of
U

ns
and V

ns
respectively, and then deriving similar expressions to equations (29)

and (30). It should be noted that the terms sin(nh) and cos(nh) in equation (27) both
equal unity for spatial maximum values of the velocity components about the
circumference.

K
FF,e,ns from equation (31) is plotted in Figure 5 for the axial and circumferential

dynamic strains for each pair of propagating waves k1, k2 and k3. The curves are
bounded by K

shape
"J3 (the shape factor for plate #exural vibration) for both

circumferential modes considered and for all three pairs of propagating waves.

3.2.3. Far,eld correlations for sum of bending strains and principal strain

The non-dimensional correlation ratio K
FF,princ,n

for the far"eld principal strain
(me"m

princ
), which takes account of both bending and shear strain, is plotted in

Figure 6 over a range of natural frequencies for modal vibration of the cylindrical
shell system in Figure 7. The non-dimensional correlation ratio presented in this
case is for all propagating waves acting simultaneously. Also shown in Figure 6 is
K

FF,e,ns for the sum of bending strains me"m
x
#mh . KFF,princ,n

was evaluated using
equation (31) and calculated spatial maximum far"eld values of principal strain and
velocity for modal vibration of the cylindrical shell system in Figure 7. &&Far"eld''
values of dynamic strain and velocity were obtained for each mode by identifying the
wave type of each wave s"1 , . . . , 8, and only including propagating waves in the



Figure 5. Non-dimensional far"eld correlation ratio between dynamic bending strain and resultant
velocity (b"0)0192): (a) n"1; (b) n"3 (** k1;* - -* k2; - - - k3).
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summation over axial wave number s in equations (25)}(27). K
FF,e,ns for the

sum of bending strains me"m
x
#mh was evaluated using equation (33). This latter

calculation is system independent and only requires that the non-dimensional
thickness parameter be known, but is limited to only one pair of propagating waves
acting at a time.

The non-dimensional far"eld correlation ratio K
FF,princ,n

for principal strain lies
in a small range and is similar in magnitude between circumferential modes
supporting the selection of a frequency-independent far"eld correlation ratio (step
changes in the correlation ratio between modes are due to variations in the relative
dominance of the velocity and strain components with axial and circumferential
mode number). Furthermore, the largest non-dimensional far"eld correlation ratio
K

FF,e,ns for the sum of bending strains is seen to provide an upper-bound curve for
K

FF,princ,n
. This indicates that the sum of bending strains can be correlated with the

resultant velocity parameter de"ned in equation (31) to provide an upper-bound
curve for the far"eld correlation ratio between principal dynamic strain and
resultant velocity, taking account of both bending and shear strains for all three
pairs of propagating waves acting simultaneously.



Figure 6. Non-dimensional far"eld correlation ratio between the sum of bending strains and
resultant velocity. Also shown is the non-dimensional far"eld correlation ratio between the spatial
maximum far"eld principal strain and resultant velocity (** k1; * - -* k2; - - - k3; e principal
strain correlation ratio).

Figure 7. Clamped cylindrical shell system.
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3.3. DYNAMIC STRAIN AND VELOCITY MODAL SPATIAL DISTRIBUTIONS

Modal spatial distributions of axial dynamic strain, circumferential dynamic
strain and transverse velocity are plotted in Figure 8 for the clamped cylindrical



Figure 8. Modal spatial distributions of dynamic strain for the clamped cylindrical shell: (a) mode
(3, 1); (b) mode (3, 3) (** axial bending strain m

x
; } } } circumferential bending strain, mh ; ------

predicted strain m
pred

).
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shell system in Figure 7. These spatial distributions are plotted for the third axial
mode of circumferential modes n"1 and 3. The third axial mode is used since both
near"eld and far"eld conditions exist for this mode. Dimensions and material
properties for the clamped cylindrical shell system are given in Figure 7, and the
system ring frequency is 7946 Hz. These calculations were performed using the
procedures described in Karczub [10].

Only dynamic strain on the outer surface of the shell wall at h"0 is considered
here. The angular position h"0 is the circumferential position of maximum axial
and circumferential dynamic bending strain, and the dynamic shear strain at this
angular position is equal to zero.

3.3.1 Axial and circumferential dynamic bending strain

The axial and circumferential dynamic strains for the clamped cylindrical shell
vary in relative signi"cance with circumferential mode number as shown by the
results in Figure 8 for axial mode m"3. For circumferential mode n"1 (Figure
8(a)) the axial strain is signi"cantly larger than the circumferential strain; for n"2
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the axial and circumferential strains are approximately equal (not shown); and for
n"3 (Figure 8(b)) the circumferential strain is signi"cantly larger than the axial
strain. The increasing relative signi"cance of circumferential dynamic strain with
circumferential mode number is associated with the increasing value of the circum-
ferential wavenumber k

c
relative to the axial wavenumber k

a
. This is the same e!ect

as observed for thin plate vibration, and is associated with the changing direction of
wave propagation as the wavenumber or mode number in one direction is varied.

3.3.2. ¸ocations of maximum dynamic bending strain

The locations of maximum dynamic strain are di!erent for axial and circum-
ferential dynamic bending strain. Maximum axial bending strain occurs at the
clamped boundaries, whereas maximum circumferential bending strain occurs
away from the clamped boundaries at a position which varies with axial mode
number. Since the angular position of maximum strain will also vary between
modes depending on the location of excitation and whether axial or circumferential
strain is dominant, the selection of suitable locations to install strain gauges for the
measurement of maximum dynamic bending strain is quite di$cult.

Consideration also needs to be given to whether maximum dynamic strain
occurs on the inner or outer surface of the cylindrical shell. For the "rst and third
circumferential modes considered here, axial strain is largest on the external wall
surface (z"!h/2), whilst the circumferential strain is the same on the inner and
outer walls for n"1 and largest on the internal wall surface for n"3. At much
higher frequencies the opposite may be true depending on: (1) the relative values of
the far"eld correlation ratio at z"$h/2; and (2) the e!ects of evanescent waves in
near"eld regions.

3.3.3. Far,eld relationships between dynamic bending strain and velocity

In Figure 8, the transverse velocity component has been scaled by the far"eld
correlation ratio for the dominant component of dynamic bending strain (the axial
component for n"1, and the circumferential component for n"3). The resulting
prediction of dynamic strain accurately predicts the maximum dynamic strain in
far"eld regions. The far"eld correlation ratios used in Figure 8 were calculated for
k1 waves only, since only the k1 waves are propagating waves at the frequencies of
interest.

3.3.4. Evanescent wave e+ects

The spatial distributions of axial and circumferential dynamic strain in Figure
8 are clearly in#uenced by evanescent waves. Evanescent wave e!ects increase axial
dynamic strain at the clamped boundaries, and increase circumferential dynamic
strain in regions near the clamped boundaries.

The propagating and evanescent wave components of axial dynamic strain
associated with the k1, k2, k3 and k4 waves are plotted separately in Figure 9 for
mode (3, 1). The k1 waves are propagating waves; the k2 waves are Type 2 evan-
escent waves (purely decaying) with the same wavelength as the propagating waves;
and the k3 and k4 waves are Type 3 and Type 4 evanescent waves (propagating



Figure 9 Modal spatial distributions of axial dynamic strain for mode (3, 1) of the clamped
cylindrical shell. ( total dynamic strain; ** k1 propagating wave component of dynamic
strain; ------ k2 evanescent wave component; *e* k3 and k4 evanescent wave components).
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decaying waves) which have much shorter wavelengths (refer Karczub [10]). The
spatial distributions for the k1 and k2 waves are very similar to the spatial
distributions for the respective propagating and evanescent wave components of
a clamped beam. The k3 and k4 waves are additional evanescent waves that cause
a sharp increase in axial dynamic strain at the clamped boundaries. At frequencies
where the axial dynamic strain is dominant, evanescent waves also cause a signi"-
cant increase in circumferential dynamic strain close to the clamped boundaries
(refer Figure 8).

Due to the additional evanescent waves present in a cylindrical shell at low
frequencies, dynamic strain concentration e!ects may be larger in cylindrical shells
than in beams. It should be noted that a very "ne mesh is required in "nite element
calculations in order to correctly model the dynamic strains associated with the
short-wavelength evanescent wave components of the response.

3.4. DYNAMIC STRAIN CONCENTRATION FACTORS

The dynamic strain concentration factor is de"ned as the ratio of the spatial
maximum dynamic strain to the spatial maximum dynamic strain associated with
propagating waves in the absence of evanescent waves. Figure 10 gives the dynamic
strain concentration factor at the natural frequencies of the clamped cylindrical
shell system for circumferential modes n"1 and 3. The maximum value of the
dynamic strain concentration factor is 2.1 for n"1 and 2)2 for n"3. For compari-
son, the maximum dynamic strain concentration factor for a clamped beam is 1.42.
Dynamic strain concentration is larger for clamped cylindrical shells than for
clamped beams due mainly to the additional evanescent waves of short wavelength
at low frequencies. At higher frequencies where there is only one pair of evanescent
waves, the maximum dynamic strain concentration for cylindrical shell vibration is
only slightly larger than 1)42 (1)6 for n"1 and 1)46 for n"3)



Figure 10. Dynamic strain concentration factor for modal vibration of a clamped cylindrical shell
based on the maximum principal strain: (a) n"1; (b) n"3.
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3.5. CORRELATION OF DYNAMIC STRAIN AND VELOCITY SPATIAL MAXIMA

Modal correlation ratios K( f
n
) between the spatial maxima of principal dynamic

strain and resultant velocity (calculated from the spatial maximum of each velocity
component) are plotted in Figure 11. The correlation ratio lies in a range of 0)8}2)6
with an average of 1)5 for circumferential mode n"1, and lies in a range of 0.7}2)3
with an average of 1)7 for mode n"3. The spatial maxima used to calculate K ( f

n
)

are the spatial maxima over the whole surface of the cylindrical shell system. The
results in Figure 11 support the selection of an upper-bound frequency-indepen-
dent correlation ratio for conservative broadband predictions of maximum overall
dynamic strain.

4. EXPERIMENTS

4.1. CLAMPED RECTANGULAR PLATE

A clamped rectangular plate was tested experimentally to obtain data
demonstrating dynamic strain and velocity spatial distributions, and the



Figure 11. Non-dimensional correlation ratio for modal vibration of a clamped cylindrical shell
based on the maximum principal strain and the resultant velocity: (a) n"1; (b) n"3.
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correlation of dynamic strain and velocity spatial maxima as a function of
frequency. These results show that whilst dynamic strain is dependent upon the
direction of wave propagation, narrowband estimates of maximum dynamic strain
from velocity are possible based on the far"eld relationship in equation (15). The
clamped rectangular plate used in the experiments is shown in Figure 12. The plate
was clamped on all sides and excited by a point force at the position shown. Strain
gauges were located on the plate surface along a line normal to one of the clamped
boundaries, 0)2 m from the nearest parallel boundary. The strain gauge positions
are given in Table 2. The "rst "ve calculated and measured resonant frequencies of
the clamped plate system are listed in Table 3.

4.1.1. Spatial distributions

Measured and predicted dynamic strain spatial distributions in the x direction
are presented in Figure 13(a) for a resonant frequency with the wavenumber
component magnitude in the x direction larger than in the y direction (k

x
'k

y
).

Spatial distributions in the x direction for a mode with wavenumber component



Figure 12. Clamped plate experimental arrangement.

TABLE 2

Strain gauge labels and positions for the clamped plate

Strain gauge Position (m)

1 0)002
2 0)025
3 0)045
4 0)085
5 0)125
6 0)165
7 0)205
8 0)24
9 0)285

TABLE 3

Calculated and measured natural frequencies of the clamped plate system

Mode m n Calculated f
m,n

(Hz) Measured f
m,n

(Hz)

1 1 1 52 41
2 2 1 84 77
3 1 2 125 115
4 3 1 138 130
5 2 2 155 145
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magnitudes in the y direction larger than in the x direction (k
y
'k

x
) are presented

in Figure 13(b). The predicted dynamic strain in each case was obtained by scaling
the measured velocity by the far"eld correlation ratio for dynamic strain using the
relationship in equation (15).



Figure 13. Measured and predicted dynamic strain spatial distributions for a fully clamped plate
along the line y"0)2 m: (a) k

x
'k

y
; (b) k

y
' k

x
(*j* measured; *h* predicted).

1094 D. G. KARCZUB AND M. P. NORTON
Maximum measured dynamic strain occurs at the clamped boundary in each
case due to dynamic strain concentration. For the case of k

x
'k

y
(Figure 13(a)), the

maximum measured strain is larger than the maximum predicted dynamic strain,
whereas for k

y
'k

x
(Figure 13(b)) the maximum predicted dynamic strain is largest.

At locations away from the plate boundaries, for the case of k
x
'k

y
, the measured

strain is only slightly less than the predicted dynamic strain, whereas for k
y
'k

x
the

measured strain is signi"cantly less that the predicted dynamic strain. These e!ects
are due to the dependence of the propagating wave components of dynamic
bending strain on the direction of wave propagation (refer equations (9) and (10)).

4.1.2. Autospectral prediction of maximum dynamic strain

Maximum dynamic strain along the line where strain gauges were installed
occurs at the clamped boundary. The measured dynamic strain at this location is
compared in Figure 14 with a velocity prediction of the maximum dynamic strain
along this line obtained using (1) the maximum measured velocity in each frequency
band along the line where strain gauges were installed, and (2) the far"eld



Figure 14. Measured and predicted dynamic strain autospectra at the clamped boundary of a fully
clamped plate for the line y"0)2 m (*j* measured; *h* predicted).
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correlation ratio for dynamic strain. No allowance has been made for dynamic
strain concentration. Dynamic strain at the boundary in the direction parallel to
the clamped boundary can be neglected as it decreases to zero at the clamped
boundary since the velocity decreases to zero (refer to equations (6) and (7);
dynamic bending strain is proportional to the one-dimensional mode shape in the
normal direction). The predicted dynamic strain underpredicts and overpredicts
depending on the particular mode and the direction of wave propagation, but
otherwise the agreement between measured and predicted is quite good. By
including a factor for dynamic strain concentration, conservative predictions of
overall dynamic strain should be possible. Hence, by extending the velocity
measurements to the whole structure, conservative predictions of maximum overall
dynamic strain appear feasible.

4.2. CYLINDRICAL SHELL FARFIELD RELATIONSHIPS

Measurements of dynamic strain and velocity at the same position on the outer
surface of a cylindrical shell were performed to obtain data demonstrating far"eld
correlations between (1) circumferential dynamic strain and transverse velocity; (2)
axial dynamic strain and transverse velocity; and (3) the sum of the dynamic
bending strain components and transverse velocity. A free}free cylindrical shell
with an annular ring half-way along its length was used as the test structure
(Figure 15). The cylindrical shell is 3 m long, has a mean radius of 0)105 m and is
0)007 m thick. Free}free boundaries were simulated by using steel cables to support
the structure at each end. Strain gauges were attached in the axial and circumferen-
tial directions at x"0)75 m. The strain gauges were positioned at the top of the
cylindrical shell and the exciting force was applied at the bottom of the cylindrical
shell at x"0)5 m, as shown in Figure 15.



Figure 15. Cylindrical shell experimental arrangement.
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4.2.1. Far,eld predictions2axial and circumferential dynamic strain

The far"eld velocity prediction of dynamic strain at x"0)75 m is compared with
the measured axial dynamic strain in Figure 16(a), and with the measured circum-
ferential dynamic strain in Figure 16(b). The predicted dynamic strain was cal-
culated from the measured transverse velocity using a non-dimensional far"eld
correlation ratio of J3. There is good agreement between predicted dynamic strain
and measured circumferential dynamic strain at most frequencies, with the predic-
tions being conservative at most frequencies. Frequencies at which circumferential
dynamic strain is signi"cantly overestimated correspond to frequencies at which
the axial dynamic strain is dominant; axial dynamic strain is itself accurately
predicted at these frequencies, whilst being overpredicted at those frequencies
where the circumferential dynamic strain is dominant. The relative correlations of
axial and circumferential dynamic strain vary with frequency due to variations in
the relative magnitudes of axial and circumferential dynamic strain associated with
changes in the direction of wave propagation. The lack of correlation at
anti-resonant frequencies is due to the noise #oor of the strain measurements.

4.2.2. Far,eld predictions2sum of bending strains

The sum of the measured components of dynamic bending strain is compared
with the predicted dynamic strain in Figure 17. The correlation between measured
and predicted is quite good in this case. Variations between measured and pre-
dicted are due to (1) variations in the far"eld correlation ratio with frequency and
between the k1, k2 and k3 waves (refer Figure 4); (2) possibly some near"eld e!ects
for modes with small axial mode number; and (3) the 22 dB noise #oor of the strain
measurements which a!ects predictions at antiresonant frequencies and at frequen-
cies below the "rst resonant frequency (below 350 Hz).

5. SUMMARY AND CONCLUSIONS

Correlations between dynamic strain and velocity were investigated for the
#exural vibration of clamped rectangular plates and the vibration of clamped
cylindrical shell systems. The results show that the correlation ratio between
dynamic strain and velocity for these systems lies in a small range. This supports



Figure 16. Measured and predicted dynamic strain autospectra at x"0)75 m of the cylindrical
shell experimental rig. (*j*measured;*h* predicted): (a) axial dynamic strain; (b) circumferential
dynamic strain.
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the use of equations (1) and (2) with upper-bound frequency-independent non-
dimensional correlation ratios for broadband conservative predictions of spatial
maximum dynamic strain in constrained rectangular plate and cylindrical shell
systems. In the case of cylindrical shell vibration, the resultant of the spatial
maximum of each of the three velocity components should be correlated with
dynamic strain rather than the transverse velocity to minimize the complicating
e!ects of waves with large in-plane and small out-of-plane motions. The derived
far"eld relationships are also largely frequency independent and are independent of
boundary conditions providing the basis for generalization of these results to plate
and cylindrical shell systems with other boundary conditions.

The results also demonstrate that spatial maximum levels of dynamic strain
occur in the near"eld region of systems with clamped boundaries due to the



Figure 17 Sum of axial and circumferential (*j* sum of measured axial and circumferential strain;
*h* predicted strain).
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in#uence of evanescent waves. The increase in spatial maximum dynamic strain
over spatial maximum far"eld levels is de"ned as dynamic strain concentration.
The level of dynamic strain concentration is signi"cant and must be taken into
account when analyzing the fatigue life of structures. An important consideration
for "nite element modelling and measurements of maximum dynamic strain is the
short spatial extent of high dynamic strain. The spatial extent of high dynamic
strain (levels at or close to the spatial maximum level) at clamped boundaries is
small and decreases as the wavenumber of evanescent waves increases. In the case
of cylindrical shell vibration, there are additional pairs of evanescent waves in the
low- to mid-frequency range with much shorter wavelength that result in even
larger levels of dynamic strain concentration over an even smaller spatial extent.
Due to these e!ects of evanescent waves, (1) a very "ne mesh is required for "nite
element calculations in order to correctly model dynamic strains at clamped
boundaries; and (2) very short length strain gauges located right at the clamped
boundary are required to measure maximum levels of dynamic strain.

REFERENCES

1. D. G. KARCZUB and M. P. NORTON 1998 Journal of Sound and<ibration 226(4), 645}674.
Correlations between dynamic stress and velocity in randomly excited beams.

2. F. V. HUNT 1960 ¹he Journal of the Acoustical Society of America 32, 1123}1128. Stress
and strain limits on the attainable velocity in mechanical vibration.

3. E. E. UNGAR 1962 Journal of Engineering for Industry 84, 149}155. Maximum Stresses in
beams and plates vibrating at resonance.

4. S. M. STEARN 1970 Ph.D. ¹hesis, Southampton ;niversity. Stress distributions in ran-
domly excited structures

5. S. M. STEARN 1971 Journal of Sound and <ibration 15, 353}365. The concentration of
dynamic stress in a plate at a sharp change of section.



DYNAMIC STRAIN AND VELOCITY IN PLATES AND SHELLS 1099
6. M. P. NORTON and F. J. FAHY 1988 Noise Control Engineering Journal 30, 107}117.
Experiments on the correlation of dynamic stress and strain with pipe wall vibrations
for statistical energy analysis applications.

7. E. E. UNGAR 1961 ¹he Journal of the Acoustical Society of America 33, 633}639.
Transmission of plate #exural waves through reinforcing beams; dynamic stress
concentrations.

8. K. FORSBERG 1964 AIAA Journal 2, 2150}2157. In#uence of boundary conditions on the
modal characteristics of thin cylindrical shells.

9. C. R. STEELE 1963 ¸ockheed Missiles and Space Co., ¹R 6-90-63-84. Shells with edge
loads of rapid variation.

10. D. G. KARCZUB 1996 Ph.D. ¹hesis, ¹he ;niversity of=estern Australia. The prediction
of dynamic stress and strain in randomly vibrating structures using vibrational velocity
measurements.

11. A. W. LEISSA, 1973 NASA SP-288. Vibration of Shells.
12. R. B. BHAT, J. SINGH and G. MUNDKUR 1993 Journal of <ibration and Acoustics 115,

177}181. Plate characteristic functions and natural frequencies of vibration of plates by
iterative reduction of partial di!erential equation.

APPENDIX A

Natural frequencies obtained using the approximate travelling wave solution for
clamped plate #exural vibration are compared with published values in Table 4.
The published values of natural frequency are taken from Bhat et al. [12]. The
non-dimensional frequency X used in Table 4 is related to the frequency f,
TABLE 4

Comparison of approximate travelling wave solution calculations of non-dimensional
natural frequency with published data from Bhat [12] for a clamped rectangular plate

with a length-to-width ratio of 2

Approximate Solution Bhat [12]

m n k
x
a k

y
a X

m,n
X

m,n

1 1 1)84 4)58 97)5 98)3
2 1 3)61 4)29 125)8 127)3
3 1 5)31 4)02 177)6 179)1
4 1 6)95 3)84 252)2 253)4
2 2 3)43 7)69 283)5 284)3
2 3 3)35 10)9 521)0 521)4
2 4 3)30 14)8 837)2 837)5
3 2 5)12 7)53 331)8 331)1
3 3 5)01 10)82 568)7 569)5
3 4 4)95 14)03 884)9 885)5
4 2 6)78 7)38 401)7 403)2
4 3 6)67 10)71 636)8 637)9
4 4 6)59 13)95 952)5 953)4
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wavenumber components k
x

and k
y
, and wavenumber k by

X"2n fa2S
o
s

D
"(k

x
a)2#(k

y
a)2"k2a2, (A.1)

where f is frequency, o
s
is mass per unit length, D is bending sti!ness, a is plate

thickness, and k
x

and k
y
are the x- and y-components of bending wavenumber k.

APPENDIX B

The matrix elements of the matrix [Q
ij
] are given by:

Q
11
"!n2k

1
!b2n2k

1
#X2#(k

ns
a)2,

Q
12
"nk

3
k
ns

a,

Q
13
"kk

ns
a!b2n2k

1
k
ns
a!b2(k

ns
a)3,

Q
21
"!nk

3
k
ns

a ,

Q
22
"!n2#X2#k

1
(k

ns
a)2#3b2k

1
(k

ns
a)2,

Q
23
"!n#b2nk

4
(k

ns
a)2,

Q
31
"kk

ns
a!b2n2k

1
k
ns
a!b2(k

ns
a)3,

Q
32
"n!b2nk

4
(k

ns
a)2,

Q
33
"1#b2!2b2n2#b2n4!X2!2b2n2(k

ns
a)2#b2 (k

ns
a)4.

The constants k
1
, k

2
, k

3
and k

4
have been used to simplify the above equations and

are de"ned by

k
1
"

1!k
2

,

k
2
"1!k2 ,

k
3
"

1#k
2

,

and

k
4
"

3!k
2

,
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The non-dimensional frequency X for cylindrical shell vibration is de"ned as

X"uaS
o(1!k2)

E
"

ua
c
L

,

where a is the shell mean radius and c
L

is the longitudinal wavespeed for a thin
plate.
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